高等数学·无穷级数

${\tt 21305337}\ \textit{Betelgeuxe}$

2022年6月20日

目录

1	基本概念与记号 1							
	1.1	数项级	数的敛散性	1				
	1.2	柯西收	x 敛原理 (柯西准则)	1				
	1.3	收敛级	数的性质	1				
2	正项	E项级数的收敛判别法						
	2.1	[正项组	<mark>及数]</mark> 比较判别法	2				
	2.2	[正项纫	<mark>吸数]</mark> 比式判别法 (达朗贝尔判别法)	2				
	2.3	[正项纫	<mark>吸数</mark>]根式判别法 (柯西判别法)	3				
	2.4	[正项纫	<mark>及数</mark>]柯西积分判别法	3				
3	任意	E意项级数						
	3.1	[交错级	<mark>吸数</mark>]莱布尼兹判别法	4				
	3.2	绝对收	双敛与条件收敛	4				
	3.3	阿贝尔	지判別法、狄利克雷判別法	5				
		3.3.1	[级数的积]狄利克雷判别法	5				
		3.3.2	[级数的积]阿贝尔判别法	5				
4	函数	函数项级数						
	4.1	基本概	无念与记号	6				
		4.1.1	函数项级数	6				
		4.1.2	函数序列	6				
	4.2	一致收	て敛的判定	6				
		4.2.1	序列的一致收敛	6				
		4.2.2	函数项级数的一致收敛	7				
		4.2.3	一致收敛的柯西准则	7				
		4.2.4	[函数项级数]强级数判别法	7				
		4.2.5	一致有界	8				
		4.2.6	[函数项级数的积]狄利克雷判别法	8				
		4.2.7	[函数项级数的积]阿贝尔判别法	8				

目录

	4.3	一致收	「敛的性质	8				
		4.3.1	和函数的连续性(求和与求极限可交换顺序)	8				
		4.3.2	逐项求积 (求和与积分可交换顺序)	8				
		4.3.3	逐项求导(求和与求导可交换顺序)	8				
5	幂级	幂级数						
	5.1	收敛半	後	9				
		5.1.1	阿贝尔定理	9				
		5.1.2	比式求 R 法	9				
		5.1.3	根式求 R 法	9				
	5.2	幂级数	(的性质	9				
		5.2.1	四则运算	9				
		5.2.2	内闭一致性	10				
		5.2.3	连续性、可积性、可微性(前一节的推论)	10				
6	泰勒级数							
	6.1	部分基	本定义与定理	11				
	6.2	3.2 求展开式的步骤						
	6.3	一些常	阴的初等函数的泰勒展开式	12				

基本概念与记号 1

通项 $a_n, n \in \mathbb{Z}$

(无穷) 数列 $\{a_n\}, n \in \mathbb{Z}$

(级数的) 部分和
$$S_n = \sum_{k=1}^n a_k$$

部分和序列 $\{S_n\}$

级数的和/常数项无穷级数 $S = \sum_{k=1}^{\infty} a_k$

1.1 数项级数的敛散性

 $n \to \infty$ 时, 若 $\{S_n\} \to S$, 则称级数 $\sum_{k=1}^{\infty} a_k$ 收敛, 若 $\{S_n\}$ 没有极限, 则称级数 $\sum_{k=1}^{\infty} a_k$ 发散.

证明数列发散的一些方法

- 证明不同的子数列有不同的极限
- $a_n \not\to 0 (n \to \infty) \Longrightarrow \sum_{k=1}^{\infty} a_k$ 发散

证明数列收敛的一些方法

- ε − N 定义
- 单调有界
- 夹逼定理
- 利用重要极限的结论

1.2 柯西收敛原理(柯西准则)

 $\{a_n\} \ \textbf{有极限} \Longleftrightarrow \forall \varepsilon > 0, \exists N, \text{st.} \forall n, m \geq N, |a_n - a_m| < \varepsilon.$

$$\sum_{k=1}^{\infty} a_k$$
收敛 \Longleftrightarrow 对 $\forall \varepsilon > 0, \exists N, \text{st.}$ $\exists N, p \in \mathbb{Z}^+, \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon.$

1.3 收敛级数的性质

- $\ \, \stackrel{\sim}{\mathcal{H}} \sum_{k=1}^{\infty} a_k = S_1, \ \sum_{k=1}^{\infty} b_k = S_2, \ \ \, \bigcirc \ \, \sum_{k=1}^{\infty} (pa_k + qb_k) = pS_1 + qS_2, \ p,q \in \mathbb{R}.$
- 修改级数的有限项,级数的敛散性不变.
- 给收敛级数的项任意加括号后,仍然收敛到原级数的和;给级数任意加括号后发散,则原级 数发散.

2 正项级数的收敛判别法

正项级数 每项都非负的级数称为正项级数.

命题 正项级数 $\sum_{n=0}^{\infty} n_k$ 收敛 $\iff \{S_n\}$ 有上界.

| 正项级数 | 比较判别法

正项级数
$$\sum_{n=1}^{\infty} u_n, \sum_{n=1}^{\infty} v_n$$
 满足 $u_n \leq v_n$ $(n=1,2,\cdots), 则$

$$\sum_{n=1}^{\infty} u_n 发散 \Longrightarrow \sum_{n=1}^{\infty} v_n 发散,$$

$$\sum_{n=1}^{\infty} v_n 收敛 \Longrightarrow \sum_{n=1}^{\infty} u_n 收敛.$$

极限形式 正项级数
$$\sum_{n=1}^{\infty} u_n, \sum_{n=1}^{\infty} v_n$$
 满足

$$\lim_{n \to \infty} \frac{u_n}{v_n} = h$$
,且 $0 < h < +\infty$,则

$$\sum_{n=1}^{\infty} u_n 与 \sum_{n=1}^{\infty} v_n$$
敛散性相同.

比式判别法 (达朗贝尔判别法)

正项级数
$$\sum_{n=1}^{\infty} u_n$$
 满足 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, 则

当l < 1,级数收敛,

当l > 1,级数发散,

当l=1,可能收敛也可能发散.

拉阿伯判别法 *(针对 l=1 的情况)

正项级数
$$\sum_{n=1}^{\infty} u_n(u_n \neq 0)$$
 满足 $\lim_{n \to \infty} n\left(\frac{u_n}{u_{n+1}} - 1\right) = R$, 则

当R < 1,级数发散,

 $\pm 1 < R < +\infty$,级数收敛,

当R=1,可能收敛也可能发散.

2.3 [正项级数]根式判别法(柯西判别法)

正项级数
$$\sum_{n=1}^{\infty} u_n$$
 满足 $\lim_{n\to\infty} \sqrt[n]{u_n} = l$, 则

当l=1,可能收敛也可能发散.

2.4 「正项级数」柯西积分判别法

无穷积分

若极限 $\lim_{A\to +\infty} \int_a^A f(x) \mathrm{d}x$ 存在,则称无穷积分 $\int_a^{+\infty} f(x) \mathrm{d}x$ 收敛,并记

$$\int_{a}^{+\infty} f(x) dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx,$$

若 $A \to +\infty$ 时 $\int_a^A f(x) dx$ 没有极限, 则称无穷积分 $\int_a^{+\infty} f(x) dx$ 发散.

正项级数 $\sum_{n=1}^{\infty} u_n(u_n \neq 0)$, 若 $\exists f(x) > 0$, $f(x) \searrow$, $\operatorname{st.} u_n = f(n), (n = 1, 2, \cdots)$ 则

$$\sum_{n=1}^{\infty} u_n(u_n \neq 0) \quad 与 \quad \int_1^{+\infty} f(x) dx \quad 敛散性相同.$$

3 任意项级数

交错级数 一项正、一项负交错排列的级数.

3.1 [交错级数]莱布尼兹判别法

若**交错级数**
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 或 $\sum_{n=1}^{\infty} (-1)^n u_n$ 满足 $u_n > 0, u_{n+1} \le u_n, \lim_{n \to \infty} u_n = 0$, 则

级数收敛, 且S与 u_1 同号, $|S| < |u_1|$.

3.2 绝对收敛与条件收敛

$$\sum_{n=1}^{\infty} |u_n|$$
收敛 $\Longrightarrow \sum_{n=1}^{\infty} u_n$ 收敛

绝对收敛 若正项级数级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} u_n$ **绝对收敛**.

条件收敛 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,但 $\sum_{n=1}^{\infty} u_n$ 发散,则称 $\sum_{n=1}^{\infty} u_n$ 条件收敛.

Tips

可以利用"绝对收敛级数"和"比值判别法"证明: 若 $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=l$,则

当l < 1,级数收敛,

当 l = 1,可能收敛也可能发散.

级数的重排 映射 $f: \{1, 2, \dots\} \rightarrow \{1, 2, \dots\}$.

绝对收敛级数的性质

- 绝对收敛级数 $\sum_{n=1}^{\infty} u_n = \sum_{u_n > 0} u_n + \sum_{u_n < 0} u_n$, 其中 $\sum_{u_n > 0} u_n = \sum_{n=1}^{\infty} \frac{|u_n| + u_n}{2}$.
- 收敛的正项级数(绝对收敛级数)重排后仍然收敛(绝对收敛)于原来的和,即绝对收敛级数满足加法交换律(无限项).
- **柯西定理** $\sum_{n=1}^{\infty} u_n$ 绝对收敛于 A, $\sum_{n=1}^{\infty} v_n$ 绝对收敛于 B, 则 $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛于 AB, 即绝对收敛的级数有乘法运算.

3.3 阿贝尔判别法、狄利克雷判别法

阿贝尔变换 (离散型分部求和公式)、阿贝尔引理 (阿贝尔不等式)

设有数列 $\{a_n\},\{b_n\},B_n=\sum_{i=1}^k a_n,$ 则有

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n-1} (a_i - a_{i-1}) B_i + a_n B_n$$

设数列 $\{a_n\}$ 是单调的, $B_n = \sum_{i=1}^k a_n$ 满足 $|B_i| \leq M$, 则有

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le M(|a_1| + 2|a_n|)$$

3.3.1 级数的积 狄利克雷判别法

若 $\lim_{n\to\infty} a_n = 0$,数列 $\{a_n\}$ 单调;部分和数列 $\left\{\sum_{i=1}^n b_i\right\}$ 有界,则 $\sum_{k=1}^\infty a_k b_k$ 收敛.

注: 其中 $\{a_n\}$ 不需要求和, 实际上在证明过程中求了差分; 而 $\{b_n\}$ 需要求和. 使用狄利克雷判别法的关键是<u>如何拆分成两个子数列的积</u>. 莱布尼兹判别法是狄利克雷判别法的特例.

3.3.2 [级数的积]阿贝尔判别法

若 数列 $\{a_n\}$ 单调有界; 级数 $\sum_{i=1}^{\infty} b_i$ 收敛, 则 $\sum_{k=1}^{\infty} a_k b_k$ 收敛.

Tips

阿贝尔判别法相比狄利克雷判别法, $\{a_n\}$ 的条件更弱, $\{b_n\}$ 的条件更强. 狄利克雷判别法和阿贝尔判别法常用于判别条件收敛, 判别绝对收敛有时用更弱的结论即可.

4 函数项级数

4.1 基本概念与记号

4.1.1 函数项级数

函数项级数
$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

收敛点 (发散点) 若 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛 (发散), 则称 x_0 为 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛点 (发散点).

收敛域 (发散域) 函数项级数的全体收敛点组成的集合,记作 X.

和函数
$$S(x) \equiv \sum_{n=1}^{\infty} u_n(x), x \in X.$$

4.1.2 函数序列

函数序列 $\{f_n(x)|n=1,2,\cdots\}$

收敛点 若 $\lim_{n\to\infty} f_n$ 存在, 则称 $\{f_n(x)\}$ 在 x_0 点收敛, 称 x_0 为 $\{f_n(x)\}$ 的收敛点.

收敛域 函数序列的全体收敛点组成的集合, 也记作 X.

极限函数 $f(x) = \lim_{n \to \infty} f_n(x), \ \forall x \in X.$

4.2 一致收敛的判定

可证明序列一致收敛的两个命题

• 设 $\{f_n(x)\}$ 在 X 上收敛到 f(x), 若 \exists 数列 $\{a_n\}, a_n \to 0 (n \to \infty)$ st.

$$|f_n(x) - f(x)| \le a_n, \ x \in X, \ n > N,$$

则 $f_n(x) \rightrightarrows f(x), x \in X (n \to \infty).$ (P241 命题 1)

• $\sum_{n=1}^{\infty} u_n(x)$ 在 X 上一致收敛 $\Longrightarrow u_n(x) \rightrightarrows 0, x \in X (n \to \infty).$ (P243 定理 1)

可证明序列不一致收敛的两个命题

• 设 $\{f_n(x)\}$ 在 X 上收敛到 f(x), 若 $\exists \{x_n\}\ (x_n \in X)$ st. 当 n > N 时,

$$|f_n(x_n) - f(x_n)| \ge l$$
, $l > 0$ 为常数

或
$$|f_n(x_n) - f(x_n)| \to k \neq 0$$
, k为常数

则 $\{f_n(x)\}$ 在 X 上不一致收敛.(P242 命题 1,2)

Tips: 通常使 $x_n \to x_d$ 的速度非常快, 其中 $x_d \notin X$.

• $u_n(x)$ 在 X 上不一致收敛于 $0 \Longrightarrow \sum_{n=1}^\infty u_n(x)$ 在 X 上不一致收敛.(P243 定理 1 之逆否命题)

4.2.2 函数项级数的一致收敛

定义 设函数项级数 $\sum_{k=1}^{\infty} u_k(x)$ 中的每一项在 X 中有定义, 若部分和数列 $S_n = \sum_{k=1}^n u_k(x)$

在集合 X 上一致收敛, 则称级数 $\sum_{k=1}^{\infty} u_k(x)$ 在 X 上一致收敛.

4.2.3 一致收敛的柯西准则

$$\sum_{k=1}^{\infty} u_k(x)$$
 在 X 上一致收敛 \Longleftrightarrow

对
$$\forall \varepsilon > 0, \exists N = N(\varepsilon), \text{st.}$$
 对 $\forall p \in \mathbb{Z}^+, \left| \sum_{k=n+1}^{n+p} u_n(x) \right| < \varepsilon$ 对 $\forall x \in X$ 成立.

4.2.4 [函数项级数]强级数判别法

若
$$|u_n(x)| \le a_n$$
, $\forall x \in X$, $n = 1, 2, \cdots$, 且 $\sum_{k=1}^{\infty} a_k$ 收敛 $\Longrightarrow \sum_{k=1}^{\infty} u_k(x)$ 在 X 上一

致收敛 (且绝对收敛), 并称 $\sum_{k=1}^{\infty} a_k$ 为 $\sum_{k=1}^{\infty} u_k(x)$ 的强级数.

4.2.5 一致有界

定义 设 $\{f_n(x)\}$ 在集合 X 上有定义, 若 \exists 常数 $M, \text{st.} \forall n \in \mathbb{Z}^+, \forall x \in X$, 都有 $|f_n(x)| \leq$ M, 则称 $\{f_n(x)\}$ 一致有界.

[函数项级数的积]狄利克雷判别法

若 (1) 对 $\forall x \in X$, $\{a_n(x)\}$ 对 n 单调, 且 $a_n(x)$ 一致收敛于 $\mathbf{0}(x \in X)$,

$$(2)$$
 部分和序列 $\left\{\sum_{k=1}^{n} b_k(x)\right\}$ 在 $X \perp$ 一致有界, 则 $\sum_{k=1}^{\infty} a_k(x)b_k(x)$ 在 $X \perp$ 一致收敛.

[函数项级数的积]阿贝尔判别法

若 (1) 对 $\forall x \in X$, $\{a_n(x)\}$ 对 n 单调 且在 X 上 **一致有界**,

$$(2)$$
 级数 $\sum_{k=1}^{\infty} b_k(x)$ 在 X 上一致收敛,

则
$$\sum_{k=1}^{\infty} a_k(x)b_k(x)$$
 在 X 上一致收敛.

4.3 一致收敛的性质

和函数的连续性 (求和与求极限可交换顺序)

在闭区间 [a,b] 上,

$$\begin{cases} { {\it sample optimized} } \\ { {\it sample optimized} } \\ { {\it sample optimized} } \\ { {\it sample optimized} } \end{cases} \Longrightarrow \begin{cases} S(x) = \sum_{n=1}^\infty u_n(x)$$
 连续
$$\lim_{x \to x_0} \sum_{n=1}^\infty u_n(x) = \sum_{n=1}^\infty \lim_{x \to x_0} u_n(x)$$

4.3.2 逐项求积(求和与积分可交换顺序)

在闭区间 [a,b] 上,

$$\begin{cases} {\it Ξ} - {\it Π} u_n 都可积 \\ {\it \sum}_{n=1}^\infty u_n(x) - {\it Σ} \psi {\it ω} \end{cases} \implies \begin{cases} S(x) = \sum_{n=1}^\infty u_n(x) 可积 \\ {\it \int}_a^b \sum_{n=1}^\infty u_n(x) {\rm d} x = \sum_{n=1}^\infty \int_a^b u_n(x) {\rm d} x \end{cases}$$

4.3.3 逐项求导(求和与求导可交换顺序)

在闭区间 [a,b] 上,

5 幂级数

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

5.1 收敛半径

 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 的收敛域有三种情况: 1) 一个点 $\{x_0\}$; 2) 以 x_0 为中心的区间,可能是开区间、闭区间、半开半闭区间; 3) \mathbb{R} .

5.1.1 阿贝尔定理

若 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x_1 收敛, 则对 $\forall x < |x_1|$ **绝对收敛**. 若 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x_2 发散, 则对 $\forall x > |x_2|$ 发散.

5.1.2 比式求 R 法

若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = l$, 则 $\sum_{n=0}^{\infty} a_n x^n$ 的收

$$R = \begin{cases} \frac{1}{l}, & 0 < l < +\infty, \\ 0, & l = +\infty, \\ +\infty, & l = 0. \end{cases}$$

5.1.3 根式求 R 法

若 $\lim_{n\to\infty} \sqrt[n]{a_n} = l$, 则 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛

$$R = \begin{cases} \frac{1}{l}, & 0 < l < +\infty, \\ 0, & l = +\infty, \\ +\infty, & l = 0. \end{cases}$$

5.2幂级数的性质

5.2.1四则运算

在 $\sum_{n=0}^{\infty} a_n x^n$ 与 $\sum_{n=0}^{\infty} b_n x^n$ 都收敛的**开区域**内, 有

$$\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n$$

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \sum_{i+j=n} a_i b_j x^n$$

5.2.2 内闭一致性

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R > 0, 则

- (1) 对∀正数 $b < R, \sum_{n=0}^{\infty} a_n x^n$ 在[-b, b]上一致收敛;
- (2) 若 $\sum_{n=0}^{\infty} a_n x^n$ 在 x = R 收敛, 则它在 [0, R] 上一致收敛; (3) 若 $\sum_{n=0}^{\infty} a_n x^n$ 在 x = -R 收敛, 则它在 [-R, 0] 上一致收敛.

连续性、可积性、可微性(前一节的推论)

连续性 幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数 S(x) 在其收敛区间 (-R,R) 内连续. 又若幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 在 x=R (或 x=-R) 处收敛,则 S(x) 在 x=R (或 x=-R)

可积性 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 S(x) 在收敛区间 (-R,R) 内任一闭区间上可积,且 可逐项求积分,且逐项积分所得的新幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 的收敛半径 $R_1 = R$.

可微性 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 S(x) 在其收敛区间 (-R,R) 内可导, 且可逐项求导,

且逐项求导所得的新幂级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛半径 $R_2 = R$.

更进一步,幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数 S(x) 在收敛区间 (-R,R) 内任意阶可导,且 可逐项求任意阶导数,它们的收敛半径都是 R.

6 泰勒级数

6.1 部分基本定义与定理

设 y = f(x) 在 x_0 处有任意阶导数, 则级数 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ 称为 f(x) 的**泰勒级** 数, 记作

$$f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
.

若一个函数的泰勒级数收敛到这个函数, 称其泰勒级数为其泰勒展开式.

当
$$x_0 = 0$$
 时, $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ 称为 $f(x)$ 的**麦克劳林级数**.

定理 幂级数展开式具有唯一性.

定理 设函数 f(x) 在含有点 x_0 的某个区间 (a,b) 内有任意阶的导函数, 则当 $x \in (a,b)$,

$$f(x)$$
能展开为泰勒级数 $\iff \lim_{n \to \infty} R_n(x) = 0$

其中 $R_n(x)$ 为 f(x) 的泰勒公式的余项, 可表示成

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)} \left(x_0 + \theta (x - x_0) \right) (x - x_0)^{n+1}, \quad 0 < \theta < 1,$$

或
$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}, \quad x_0 < \xi < x$$
或 $x < \xi < x_0.$

6.2 求展开式的步骤

Step 1 求导, 写出泰勒级数 (展开式);

Step 2 利用幂级数的性质 (可用"比式求 R 法""根式求 R 法") 求出收敛半径, 并进一步求出收敛域.

Step 3 在收敛域上讨论 $R_n(x) \to 0$ 何时成立, 得出展开式成立的区间.

6.3 一些常用的初等函数的泰勒展开式

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots \qquad (-1 < x < 1)$$

$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + \dots \qquad (-\infty < x < +\infty)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots \qquad (-\infty < x < +\infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots \qquad (-\infty < x < +\infty)$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{1}{2n+1} x^{2n+1} + \dots \qquad (-1 \le x \le 1)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots \qquad (-1 < x \le 1)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + \dots \qquad (-1 < x < 1)$$